
Decoding FL Defenses: Systemization, Pitfalls, and
Remedies

Abstract— While the community has designed various defenses
to counter the threat of poisoning attacks in Federated Learning
(FL), there are no guidelines for evaluating these defenses. These
defenses are prone to subtle pitfalls in their experimental setups
that lead to a false sense of security, rendering them unsuit-
able for practical deployment. In this paper, we systematically
understand, identify, and provide a better approach to address
these challenges. First, we design a comprehensive systemization
of FL defenses along three dimensions: i) how client updates are
processed, ii) what the server knows, and iii) at what stage the
defense is applied. Next, we thoroughly survey 50 top-tier defense
papers and identify the commonly used components in their
evaluation setups. Based on this survey, we uncover six distinct
pitfalls and study their prevalence. For example, we discover
that around 30% of these works solely use the intrinsically
robust MNIST dataset, and 40% employ simplistic attacks, which
may inadvertently portray their defense as robust. Using three
representative defenses as case studies, we perform a critical
reevaluation to study the impact of the identified pitfalls and
show how they lead to incorrect conclusions about robustness.
We provide actionable recommendations to help researchers
overcome each pitfall.

I. INTRODUCTION

Federated learning (FL) [59] is an emerging approach in
machine learning (ML) where multiple data owners, called
clients, collaboratively train a shared model, known as the
global model, while keeping their individual training data
private. The central server (service provider) iteratively ag-
gregates model updates from each client, which are generated
based on their local data. The server merges these updates
using an aggregation rule (AGR) and uses them to update the
global model. Following each training iteration (also known
as round), the refined global model is distributed to the clients
participating in the next round. Prominent distributed plat-
forms such as Google’s Gboard [2] for next-word prediction,
Apple’s Siri [1] for automatic speech recognition [72], and
WeBank [93] for credit risk predictions, have adopted this FL
mechanism. Its intrinsic characteristic of promoting collabora-
tion while preserving privacy has rendered it indispensable in
critical applications, notably in medical diagnosis [29], [46],
[75], activity recognition [107], [26], [68], [86], and next-
character prediction [87].

FL is gaining popularity due to its privacy-preserving and
collaborative nature, yet it faces vulnerabilities to poisoning

attacks [28], [84], [83], [91], where malicious or compro-
mised clients intentionally corrupt FL training and poison
the global model. This can result in a poisoned model that
performs poorly on all inputs in untargeted poisoning attacks
or on specific inputs in targeted poisoning attacks. To address
these threats, the community has developed various defense
mechanisms. Robust AGRs such as Multi-krum [14] and
Trimmed-mean [103], detect and discard malicious updates.
Certified defenses like CRFL [97] and Ensemble FL [20]
provide robustness certifications. Tools like FLDetector [106]
proactively identify and remove malicious clients during train-
ing. Meanwhile, FedRecover [18] focuses on post-poisoning
recovery after an attack, aiming to restore the global model’s
performance. Ditto [52] integrates fairness and robustness
by regularizing the local training objective, and Cronus [23]
enhances security and privacy through knowledge distillation.
Systemizing FL Defenses: Besides these few defenses, the
variety of available options (Table IV) poses a challenge
for practitioners, i.e., determining the right defense for a
specific use case or integrating multiple defenses for enhanced
robustness becomes complex without a clear understanding of
where a defense and its dependencies fit in the FL pipeline.
To address these research gaps, we conduct a comprehensive
systemization (§III) of FL defenses, organizing them along
three crucial dimensions: processing of client updates, server’s
knowledge, and defense phase. While existing works [83],
[40], [10], [13], [38], [80] have designed taxonomies primarily
focused on adversarial ML, including those that guide the
selection of the appropriate attacks and settings for FL, a
dedicated systemization for FL defenses has been lacking.

To the best of our knowledge, we are the first to propose
such a systemization. Our framework simplifies the selection
and integration of defenses, clarifying when and where each
defense is applied (§III-A). For example, Figure 2 shows that
FLDetector operates in the pre-aggregation phase(“when”) at
the server(“where”). Moreover, the systemization highlights
underrepresented defense types, encouraging further explo-
ration and innovation. For example, our analysis identified
FedRecover as the only post-training, update-modification
technique using estimation, prompting exploration of not only
other estimation-based but also post-training defenses. From
our systemization in Table I, we can see that most defenses
are on the server side, operate during pre-aggregation, and
employ metric-based processing of client updates. Importantly,
our systemization is designed to be expandable to incorporate
more attributes in the future.
Pitfalls in experimental setups of FL defenses: During
our systemization, we find that defenses are evaluated across
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Figure 1: FL defense evaluation pipeline. We display common choices for each stage in the pipeline, e.g., FedSGD or FedAvg as
the FL algorithm, and highlight the associated pitfall, i.e., using a slow-converging algorithm. We also indicate interdependencies
between stages, e.g., large-scale and cross-device in FL type limit the number of malicious clients in the attack.

various experimental setups with different choices of datasets,
data distributions, attacks, etc. We thoroughly survey 50 top-
tier FL defense works (§IV) and report frequently used choices
of six experimental setup components: data and distribution,
FL type and algorithm, attack, and evaluation type. We find
questionable trends in these choices, e.g., most works use the
intrinsically robust MNIST dataset and resort to simple attacks
such as label flipping. This motivates the need to uncover
pitfalls in the experimental setups of existing FL defense works
and provide guidelines for future evaluations.

Existing literature provides guidelines for robustness evalu-
ations. For instance, [6] offers insights and recommendations,
focusing on pitfalls in centralized ML-based security system
evaluations. Similarly, [22] identifies pitfalls in evaluating
adversarial robustness and suggests mitigation guidelines.
In [83], authors question trends in existing attack threat mod-
els, demonstrating FL robustness under practical limitations.
However, a comprehensive exploration of FL defenses and
their experimental setups is lacking.

To fill this gap in the literature, we identify six distinct
pitfalls in the evaluation setups of existing works based on our
survey in §IV. We take inspiration from [43] in identifying
pitfalls in FL defenses and building on top of their work.
Not only do we explore additional pitfalls and analyze their
impact in much more diverse settings, but we also first perform
an extensive systemization to justify the choices we make in
pitfall analysis. For example, Figure 2 and Table I help us to
select and justify three distinct defenses for the impact analysis
of pitfalls in §V.

Figure 1 shows the pitfalls at the point of their occurrence in
the FL training pipeline. For instance, choosing an intrinsically
robust dataset is a pitfall that occurs in the dataset selection
stage. We also show the common choices for each stage of the
pipeline, such as global or personalized evaluation in the last
stage. Figure 1 also highlights the interdependencies between
stages. For example, non-i.i.d. distribution in the distribution
stage influences the choice of evaluation metrics (§V-F), while
large-scale limits the threat model in the attack stage (§V-D).
We thoroughly explain each pitfall and its prevalence in §IV,
and provide actionable recommendations to overcome them.
Finally, in §V, we perform a thorough impact analysis of the

identified pitfalls using three representative defenses and show
how we can avoid them by following our recommendations.
These pitfalls can also be applied to attacks, e.g., only
evaluating an attack in cross-silo settings and not considering
its efficacy in the cross-device setting is a pitfall. Similarly,
other pitfalls can arise from attacks, as attacks and defenses are
inherently interconnected—essentially two sides of the same
coin working together. However, for the purpose of this paper,
we will analyze the pitfalls from the lens of defenses.
In summary, we make the following contributions:
1. Systemization of FL Defenses: We perform a compre-
hensive systemization of FL defenses along three dimensions:
processing of client updates, server’s knowledge, and the
defense phase (§III).
2. Identifying Major Pitfalls: We comprehensively review 50
top-tier FL defense works and identify six prevalent pitfalls.
In response to each pitfall, we provide actionable recommen-
dations to guide future research efforts (§IV).
3. Dissecting the Impact of Pitfalls: Guided by our system-
ization, we choose three representative FL defenses and use
them to perform a thorough impact analysis of our identified
pitfalls. We show how the pitfalls lead to a false sense of
security, and by following our recommendations, the research
community can overcome them (§V).
This work is not meant as finger-pointing, particularly to
the defenses under evaluation. We have chosen them as
representative contributions to the field, humbly employing
them as testbeds to offer constructive guidelines for future
research.

II. BACKGROUND

A. Federated Learning (FL)

In FL [41], [59], [44], a service provider, called server,
trains a global model, θg , on the private data from multiple
collaborating clients, all without directly collecting their indi-
vidual data. During the tth FL round, the server selects n out
of total N clients and shares the most recent global model (θtg)
with them. Then, a client k uses their local data Dk to compute
an update∇t

k and shares it with the server. These updates serve
as a client’s contribution towards refining a global model. De-
pending on how a client computes their update, FL algorithms
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can be broadly divided [59] into FedSGD and FedAvg. In
FedSGD, a client computes the update by sampling a subset b
from their local data and calculating a gradient of loss ℓ(b; θtg)
of the global model on the subset, i.e., ∇t

k = ∂ℓ(b; θtg)/∂θ
t
g .

In FedAvg, a client k fine-tunes θtg on their local data using
stochastic gradient descent (SGD) for a fixed number of local
epochs E, resulting in an updated local model θtk. The client
then computes their update as the difference ∇t

k = θtk − θtg
and shares ∇t

k with the server. Next, the server computes
an aggregate of client updates using an AGR, fagg(such as
mean), i.e., using ∇t

agg = fagr(∇t
{k∈[n]}). Finally, the server

updates the global model of the (t+1)th round using SGD as
θt+1
g ← θtg+η∇t

agg with server’s learning rate η. Due to these
differences, FedAvg achieves faster convergence and attains
higher accuracy than FedSGD [59].

After discussing the update process of FL models and the
collaboration between servers and clients, we present the FL
applications (where it is deployed) and setups (how it is used).
There are two main types of deployments: cross-device and
cross-silo, as explained in [41]. In cross-device FL, N is
very large (ranging from a few thousand to billions) [78],
and only a tiny fraction of them are chosen in each FL
training round (n≪ N ). These clients are typically resource-
constrained devices such as mobile phones, smartwatches, and
other IoT devices [2], [107]. Contrastingly, in cross-silo FL, N
is moderate (up to 100) [49], and all clients are selected in each
round (n = N ). These clients are typically large corporations,
including banks [93] and hospitals [66].

B. Poisoning Attacks in FL

There are various poisoning attacks in literature [14], [11],
[12], [9], [60], [28], [57], [99], [63], [84]. An untargeted
poisoning attack aims to lower the test accuracy for all test
inputs indiscriminately [28], [11], [60], [57], [99]. A targeted
poisoning attack [12], [9] lowers the accuracy on specific test
inputs. For instance, in backdoor attacks [9] (a sub-category
of targeted attacks), the goal is to misclassify only those test
inputs that have an embedded backdoor trigger. Since these
attacks only affect a subset of inputs, they are much weaker
than untargeted attacks.

We can also divide the attacks based on the adversary’s
capabilities. In model poisoning attacks [28], [11], [60], [99],
[12], [9], [84], the adversary is strong enough to access and
perturb the model gradients on malicious devices before they
are sent to the server in every training round. A data-poisoning
adversary [63] is much weaker than the model poisoning
adversary [11], [28], [83], [84] as it can only poison the
datasets on malicious devices.

1) Attacks used in our Study: In our evaluation, we focus on
untargeted model poisoning attacks as they are stronger [83].
Stat-Opt [28]: provides a generic model poisoning method
and tailors it to specific AGRs such as TrMean [103], Me-
dian [103], and Krum [14]. The adversary first calculates the
mean of the benign clients’ updates, ∇b, and finds the static
malicious direction w = −sign(∇b). It directs the benign
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Figure 2: Systemizing FL Defenses: Categorization of de-
fenses based on their defense phases. Processing operations
for client updates are color-coded: filtering (blue), re-weighing
(green), and modification (purple). Defenses belonging to the
same category of processing may have different phases, e.g.,
FedRecover performs update modification at the server, while
Ditto performs update modification at the client. Dependencies
are also highlighted, such as FedRecover utilizing stored local
and global models for estimation.

average along the calculated direction and scales it with γ to
obtain the final poisoned update, −γw.
Dyn-Opt [84]: proposes a general poisoning method and
tailors it to specific AGRs, similar to Stat-Opt. The key
distinction lies in the dynamic and data-dependent nature of
the perturbation. The attack starts by computing the mean of
benign updates, ∇b, and a data-dependent direction, w. The
final poisoned update is calculated as ∇‘ = ∇b + γw, where
the attack finds the largest γ that can bypass the AGR. They
compare their attack with Stat-Opt and show that the dataset-
tailored w and optimization-based scaling factor γ make their
attack a much stronger one.

2) Threat Model in Our Study: Below, we detail the threat
models for poisoning attacks used in our study.
Goal: Our adversary is untargeted, crafts malicious updates
and sends them to the server, where, upon aggregation with
other updates, it indiscriminately lowers the accuracy of the
global model for all test inputs.
Knowledge: In line with most defense approaches, we assume
that the adversary knows the AGR used by the server. Unless
explicitly specified, the adversary has complete knowledge of
the gradients of both malicious and benign clients. In some
cases, we employ a partial knowledge adversary, where the
adversary knows the server’s AGR but not the gradients of
benign clients.
Capabilities: Our untargeted model poisoning adversary con-
trols m out of N clients. The adversary is strong enough to
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Table I: A systematic overview of FL defenses, helping practitioners in 1) selecting defenses aligned with their use cases, 2)
combining multiple defenses for heightened performance, and 3) designing new defense approaches by gaining insights into
the FL defenses.

Dimension Types Attributes Description Defenses

Processing
of Client
Updates

Filtering Update-based Filters updates by comparing update values with each other. TrMean [103], Krum [14], GeometricMean [73]
Metric-based Filters updates by comparing metrics associated with each update. MST-AD & Density-AD [77], LF-Fighter [39], ERR & LFR [28], FLDetector [106]

Update
re-weighing

Similarity-based Filters updates by comparing their similarity with a reference. CONTRA [8], FLTrust [19]
Loss-based Applies weights based on loss for an update. Sageflow [71], Anomaly Detection [51]
Optimization-based Applies weights based on an optimization problem. SmartFL [100]

Update
modification

Scaling/Clipping Scales or clips an update if it exceeds a certain threshold. Norm Bounding [88], Signguard [102]
Distillation Distills an update into a low-dimensional vector. Cronus [23], Auror [85]
Regularization Introduces regularization to control robustness and privacy. Ditto [52]
Estimation Estimates a benign update from historical information. FedRecover [18]

Server’s
Knowledge

Knowledge
of data

No-knowledge Server has no knowledge of data or its distribution at the client side. TrMean [103], FedRecover [18], FLDetector [106], Cronus [23]
Partial knowledge The server uses a small auxiliary dataset. Sageflow [71], SmartFL [100], FLTrust [19]

Knowledge
of updates

No-knowledge Server does not have knowledge of local model updates. Auror [85], Cronus [23]
Full knowledge Server has complete knowledge of local model updates. FLCert [21], Krum [14], Anomaly Detection [51]

Defense
Phase

Aggregation Pre-aggregation Processing of client updates is done before updates are aggregated. MST-AD & Density-AD [77], Bulyan [60], TrMean [103], Krum [14], Sageflow [71]
Post-aggregation Processing of client updates is done after aggregation. FLCert [21], ERR & LFR [28]

Non-
aggregation

Local training The defense component is part of the local training. FLIP [105], Ditto [52], Cronus [23]
Post-training The defense is applied after training. FedRecover [18]

manipulate model updates of the malicious clients it controls
and has access to the global model parameters shared every
round. We set the proportion of malicious clients at 20%
(unless stated otherwise), a common benchmark in prior
studies [84], [28], [19], [18], which also examined how varying
this percentage impacts the severity of attacks. To ensure
consistency and comparability with these works, we adhere
to the same 20% setting in our implementation.

III. SYSTEMIZATION OF DEFENSES AGAINST FL
POISONING

Here, we introduce a systematization for FL defenses and
use it to rationalize the selection of three representative de-
fenses from the literature. Later, in §V, we use these chosen
defenses to conduct a comprehensive impact analysis of the
pitfalls outlined in §IV.
A. Classification of Defenses

Here, we present the three key dimensions along which we
classify FL defenses in literature, as shown in Table I. In
Figure 2, we group defenses according to the third dimension,
i.e., defense phase, and highlight their dependencies.

1) Processing of client updates: Client model updates un-
dergo several processing steps before they are aggregated at
the server. The commonly used processing operations are:
Filtering updates to entirely or partially eliminate local
updates. Filtering defenses fall into two main categories: those
based on the values of local model updates, termed update-
based filtering [103], [14], [73], and those relying on some
metrics associated with local models, known as metric-based
filtering [77], [39], [28], [106].

a) Update-based filtering [103], [14], [73] is based on
the values of local model updates. It further divides into
dimension-wise and vector-wise filtering. Dimension-wise fil-
tering defenses, such as TrMean [103] and Median [103],
filter out malicious values along each update dimension, while
vector-wise filtering defenses, such as, Krum [14], remove
entire malicious updates.

b) Metric-based filtering [77], [39], [28], [106] relies on
some metrics associated with local models, e.g., FLDetec-
tor [106] uses a suspicious score as the metric to identify and
remove malicious clients from the training process. We de-
scribe FLDetector in detail in §C. In loss-based rejection [28],

the loss associated with and without incorporating an update
for aggregation is calculated, and updates with higher loss
are removed. Similarly, error-based rejection [28] removes
updates by assessing the error instead of the loss.
Update re-weighing involves assigning a weight to each local
update, reflecting its perceived level of maliciousness. Various
re-weighting approaches exist, including:

a) Similarity-based re-weighting [8], [19] is shown by
FLTrust [19], where the server assigns a trust score to each
client based on the similarity of its updates to the server’s
update, computed on a small dataset.

b) Loss-based re-weighting [71], [51] illustrated by Sage-
flow [71], involves the server assigning a weight to each update
based on local model loss on a small dataset at the server.

c) Optimization-based re-weighting is demonstrated by
SmartFL [100], which assigns weights through an optimization
problem with the same number of parameters as that of clients.
Update Modification changes the update itself to safeguard
the global model from the impact of malicious updates. The
key techniques within this approach are:

a) Scaling Updates limits a local update by clipping it if it
exceeds a certain threshold, for example, defenses like Norm-
bounding [88], [102].

b) Distilling update knowledge [23], [85] is another facet
of update modification that involves avoiding the transmission
of the entire local model update to the server due to the
curse of dimensionality [23], which increases the risk of higher
impact from poisoning attacks. Instead, clients send distilled
information to the server. In Cronus [23], clients send soft
labels to the server, and the aggregate is used to update local
models. This defense mitigates the risk of poisoning attacks
and directly prevents whitebox inference attacks, as the server
cannot access the local model parameters.

c) Regularization defenses perform regularization to
achieve personalized [36], [35] client models. An example
is Ditto [52], which modifies the local training objective
by introducing a regularization term to control the tradeoff
between privacy and robustness of the local model.

d) Estimation is exemplified by FedRecover [18], which
leverages past information and estimation to recover the unpoi-
soned global model. We discuss the mechanism of FedRecover
in detail in §C.
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2) Server’s Knowledge: The defense is generally applied
at the server, where it collects all local updates and strives
to obtain the best possible global model that is least affected
by malicious updates. The server’s knowledge varies across
different defenses and can be described in terms of data and
local model updates:
Knowledge of Data: In the no-knowledge setting [103], [18],
[106], [23], as the name suggests, the server lacks information
about the data used for training and testing. It only possesses
knowledge of the collected local model updates, examples of
which include TrMean [103], Krum [14], and Median [103].
Conversely, in the partial-knowledge setting [71], [100], [19],
the server possesses a small dataset, which it deploys in
various ways, such as calculating entropy associated with
updates [71] or assigning a trust score to each client [19] to
enhance aggregation robustness against attacks.
Knowledge of Local Model Updates: In the full-knowledge
setting [21], [14], [51], the server has complete access to
the model parameters of all clients, representing the widely
used scenario. In the partial-knowledge, or distilled-knowledge
setting [85], [23], the server only has access to some distilled
form of the model parameters, such as the output layers [23].

3) Defense Phase: We categorize defenses based on the
training phase, specifying when and where in the training
pipeline the defense is applied.
Aggregation-based defenses are applied during the aggrega-
tion phase. These defenses can be further categorized into pre-
aggregation [77], [60], [103], [14], [71] defenses that perform
processing of client updates such as dimension-wise filtering
before aggregating updates, or post-aggregation [21], [28],
[20] defenses, e.g., Ensemble FL [20] that creates all possible
aggregations of k models from N clients, then selects the most
frequent predicted label as the correct one.
Non-aggregation-based defenses that are not performed at
aggregation can be further categorized based on their phase:

a) During Local Training: [105], [52], [23] The defense
takes place at the client’s side during local training. For
instance, Ditto [52] uses regularization in client training to
control the deviation of benign local models from poisoned
global models.

b) Post-Training: FedRecover [18], employing a recovery-
based mechanism, falls into this category as it requires his-
torical information from one training session to estimate the
un-poisoned global model during the recovery phase.
B. Our Selected Case Study Defenses

We choose three defenses for brevity to analyze the impact
of pitfalls in §V; TrMean, FLDetector, and FedRecover. Due
to space constraints, we defer their detailed descriptions to
Appendix C.

We justify that the chosen defenses are distinct along the
dimensions in Table I. TrMean [103] is a pre-aggregation,
update-based filtering defense that removes malicious com-
ponents of client updates dimension-wise during training.
FLDetector [106] is a pre-aggregation, metric-based filtering
defense designed to detect and remove malicious clients during

training by analyzing their updates. The metric FLDetector
uses is the suspicious score, which measures the consistency
between the actual update and an estimated one. It is important
to note that although TrMean and FLDetector seem similar
in their filtering mechanisms, they are different and have
distinct approaches. TrMean filters components of updates
before aggregating them, while FLDetector removes entire
clients from the training process if they deviate too much
from an estimated reference update, which is calculated using
historical information. FedRecover [18] is a post-training,
update modification defense that uses estimation to recover
from a previously poisoned global model. It is an advanced
defense that uses TrMean in its aggregation phase and relies
on a detection mechanism to remove malicious clients before
it starts the recovery process. In §V-A2 and §V-E3, we show
the performance of FedRecover when we perform Stat-Opt on
TrMean and FLDetector, respectively.

All three defenses do not require any auxiliary dataset
at the server, and we prefer this setting because the server
might not have access to the dataset in practical, real-world
scenarios. Similarly, we prefer the full-knowledge of client
updates scenario, as most of the works [21], [14], [51], [52],
[71], [19] use this setting, and it leads to a stronger adversarial
setting. Although the server in all three of our chosen defenses
has full knowledge of the client model updates, the defenses
differ in the amount of historical information needed. Figure 2
clearly shows these different dependencies. TrMean does not
require model updates from the past rounds and performs
filtering using client model updates of the current round.
FLDetector requires updates from the past few rounds and uses
them to calculate the malicious score for updates in the current
round. Since FedRecover is a post-training defense, it requires
updates from all the rounds in the original training. Therefore,
the volume of updates required is highest for FedRecover and
lowest for TrMean.

IV. PITFALLS IN FL DEFENSE EVALUATIONS

After presenting the detailed systemization of defenses, it is
imperative to unveil critical pitfalls in FL robustness evalua-
tions. By scrutinizing 50 defenses (Table IV in Appendix), we
link each pitfall to specific components in the FL workflow
(Figure 1). We examine each pitfall’s prevalence (Figure 3)
across the 50 works, discuss their implications, and conclude
with practical recommendations.

Pitfall-1: Intrinsically robust datasets. The chosen datasets
are intrinsically robust and lead to incorrect conclusions
about a defense’s performance.

Description: A designed defense may seem to perform well
against specific attacks upon evaluation [103]. However, the
evaluation dataset might be inherently robust because it is
simple and lacks complexity. Therefore, in such situations,
we cannot tell if an attack is mitigated due to the inherent
robustness of the dataset or the effectiveness of the defense.
Prevalence and implications: While it is intuitive that a
defense mechanism’s performance inevitably varies across
datasets, using overly simple datasets like MNIST fails to yield
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Figure 3: Frequency of choices of the six key components (Dataset, distribution of clients’ data, FL algorithm, FL type, attacks,
and evaluation) of robustness evaluation setup. § V discusses the impacts of choices on the robustness of FL poisoning defenses.

meaningful insights into the true robustness of a defense mech-
anism, (§V-A). MNIST is a class-balanced dataset used in FL
using synthetic techniques such as Dirichlet Distribution [61].
Conversely, real-world FL tasks are complex and characterized
by highly class-imbalanced datasets (§V-B1).

Despite efforts to create open-source datasets mirroring real-
world scenarios [17], [25], our survey reveals that MNIST
remains predominant, constituting 30% of the works [42],
[103], [20], [94], [48], [55] (Figure 3a). CIFAR10 and Fashion-
MNIST, though commonly used, lack true FL representation
due to their class-balanced nature (§V-B1). FEMNIST [17],
a real-world dataset specifically curated for FL, is used by
only 20%. Another interesting observation from Figure 3a is
the exclusive reliance on image-classification datasets, despite
the popularity of language and vision-language models in
contemporary research.
Recommendations: Future Evaluations should consider using
FL tasks of varying complexities, such as FEMNIST and
CIFAR10, for classification and exploring other modalities,
such as language, for NLP tasks. In our evaluations in §V we
use image classification datasets, FEMNIST and CIFAR10,
and a language dataset, StackOverflow, in §V-D1 for large-
scale FL evaluation.

Pitfall-2: Homogeneous client data distributions. Using
i.i.d. (homogeneous) distributions with low heterogeneity
may create a deceptive sense of system robustness that does
not reflect real-world complexities.

Description: Evaluating a defense on a particular dataset
may yield perceived robustness due to inherent homogeneity
(§V-B1) in the dataset distribution rather than the efficacy of
the defense technique itself.
Prevalence and implications: We find that around 50% of
the works, use i.i.d. distributed data, despite evidence that it
is easier to defend against such distributions [28], [84], [11],
[104] (as seen in Figure 3b). The second most common ap-
proach involves a natural data distribution where each sample
is associated with a client such as StackOverflow [3]. Other
artificial distributions include FCJ [28], Dirichlet (Dir) [9],
[78] and Mcmahan [59]. In §V-B1, we prove that Dirichlet
more closely aligns with real-world distributions, informing
our subsequent analysis in §V-B on how defense performance

varies with different distributions and levels of heterogeneity.
Recommendations: Future works should prioritize the use
of real-world datasets to provide a more realistic evaluation.
When working with class-balanced datasets like MNIST, Fash-
ionMNIST, and CIFAR10, it is crucial to distribute them
among clients heterogeneously. This approach aims to mimic,
to some extent, the diversity found in real-world distributions.

Pitfall-3: Slow-converging algorithms. Evaluations often
overlook the use of state-of-the-art, fast-converging algo-
rithms, thereby compromising robustness.

Description: The robustness evaluation of an FL defense may
heavily rely on the choice of FL algorithms, such as FedAvg
or FedSGD, used in its implementation. Using a superior algo-
rithm can enhance system robustness by addressing potential
weaknesses in the FL algorithm rather than focusing solely on
defense improvement.
Prevalence and implications: Despite FedAvg’s recognized
advantages in performance, faster convergence, and lower
communication overhead compared to FedSGD [59], approx-
imately 40% of prior works employ the slow-converging
FedSGD algorithm for evaluations (Figure 3c). This subop-
timal choice contributes to a larger window for attacks and
results in a more significant accuracy drop (§V-C).
Recommendations: Future evaluations should prioritize state-
of-the-art, fast-converging FL algorithms to remove any weak-
nesses (such as slow convergence) associated with the FL
algorithm.
Pitfall-4: Limited FL settings. Considering only limited
scenarios while ignoring practical limitations and factors
related to scalability, such as computation, communication,
cost, and storage.

Description: The performance of a defense can vary when
constrained by real-world limitations, e.g., cost constraints
may lead to selecting a very low percentage of malicious
clients. Also, the computation, communication, cost, and stor-
age overhead associated with scaling up the system might not
be feasible in practical scenarios.
Prevalence and implications: Only 24% of the works in
our survey use the cross-device setting (Figure 3d). As
demonstrated by [83] on FEMNIST, CIFAR10, and Purchase
datasets with the cross-device setting, using a low percentage
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of malicious clients due to cost constraints reduces attack
performance. We show that on an even larger scale using
the naturally distributed Stackoverflow dataset in the cross-
device setting, the attack shows shows no effect on the non-
robust mean AGR (§V-D1). Additionally, defenses that rely on
consistent historical information [106], [18] are incompatible
with the cross-device setting (§V-D2) because a client is not
selected in every round. We thoroughly discuss the scalability
issues of FedRecover and FLDetector in §V-D2.
Recommendations: Future evaluations should include deploy-
ment conditions of a much larger scale (cross-device) and
ensure that the defense provides significant utility compared to
the computation and communication cost it incurs. While we
do not label the cross-silo setting as impractical, we emphasize
designing defenses that are compatible with the cross-device
setting as well.
Pitfall-5: Naive attacks. Evaluating defenses solely against
simple and naive attacks rather than incorporating strong
state-of-the-art attacks makes a defense seem robust.

Description: The true robustness of a defense emerges when
tested against strong and adaptive attacks, i.e., attacks tailored
for a defense algorithm. Relying on attacks known to be weak
and naive for evaluating a new defense will not give us a true
picture of the defense’s robustness.
Prevalence and implications: Figure 3e shows the frequency
of various attacks used in our survey. Despite the existence
of several strong poisoning attacks in the literature [84],
[28], [99], [11], [91], our analysis reveals that about 40%
of the works opt for simplistic approaches such as random
Gaussian [14], label flipping [52], sign flipping [48], bit
flipping [98]), even though prior works have shown their poor
performance even under strong adversarial settings [83], [28],
[48], [74]. We discuss the impact of this pitfall extensively
in §V-E by using state-of-the-art attacks, and in §V-E2, we
design our own adaptive attack against FLDetector. Our impact
analysis reveals that this is one of the most crucial components
of FL evaluation.
Recommendations: To correctly evaluate the robustness of
a defense, one should use 1) strong adaptive attacks that
are tailored to the defense algorithm and maximally reduce
its performances and 2) strong state-of-the-art attacks from
existing literature.

Pitfall-6: Unfair metrics. Not capturing clients’ perfor-
mances separately and only reporting global accuracy met-
rics does not give a good measure of per-client robustness.

Description: Data heterogeneity across clients in practical FL
systems results in varying performance across clients. This
phenomenon is also known as representation disparity [37].
Global accuracy does not give us any idea of the individual
performances of clients. In addition to this, real-world datasets
are class imbalanced [17] as opposed to synthetic datasets
such as MNIST and CIFAR10. The commonly reported overall
accuracy metric lacks information on per-class performance.
Prevalence and implications: Despite heterogeneity being a
well-known issue, only 4% of the surveyed works incorporate

personalized evaluations (Figure 3f). Our per-client analysis of
TrMean and FedRecover demonstrates that per-client perfor-
mances vary a lot, highlighting the need to account for these
variations in real-world FL systems (§V-F). We also highlight
the importance of reporting per-class accuracies, as we show
that the overall accuracy is a misleading metric (§V-F3).
Recommendations: Future evaluations should include person-
alized evaluations along with global evaluations to capture
the variation in clients’ performances. In addition to this per-
client evaluation, future works should also report per-class
performance, especially when using class-imbalanced datasets.

V. IMPACT ANALYSIS OF PITFALLS

In this section, we analyze the impact of each identi-
fied pitfall. We test representative defenses across diverse
setups by following the recommendations outlined in §IV and
scrutinizing their implications. This systematic exploration is
intended to help researchers make informed decisions about
the robustness of FL defenses.
A. Intrinsically Robust Datasets

First, we evaluate how the selection of datasets impacts the
robustness of our three representative FL defenses: TrMean,
FedRecover, and FLDetector.

1) TrMean is only robust with MNIST: To assess TrMean’s
sensitivity to different datasets, we employ FedAvg and
FedSGD on MNIST, FashionMNIST, CIFAR10, and FEM-
NIST, both without attacks and under Stat-Opt [28]. Results
in Figure 4a highlight MNIST’s intrinsic robustness. Despite
a high (20%) amount of malicious clients, MNIST-trained FL
model accuracy drops less than 1% in FedAvg, while other
datasets experience more substantial declines, peaking at 50%
for CIFAR10.

The variation in performance can be attributed to task
complexity. Baseline accuracies in Figure 4 reflect this com-
plexity, with MNIST having the highest no-attack accuracy
and CIFAR10 the lowest. From this set of experiments, we
can conclude that TrMean is highly robust using MNIST-based
evaluations, but not with other datasets as the evaluations of
TrMean using other three datasets, FashionMNIST, FEMNIST,
and CIFAR10 show.

2) FedRecover works better with simple datasets: We
evaluate FedRecover on FashionMNIST, FEMNIST, and CI-
FAR10, in addition to MNIST, since MNIST is heavily
evaluated in [18]. We test FedRecover under recovery-from-
benign and recovery-from-attack scenarios. In the former, no
attack occurs during original training, while in the latter,
Stat-Opt attack is applied during original training but not
during recovery (we discuss attack during recovery in §V-E3).
Consistent results with [18] on MNIST and FashionMNIST
validate our implementation.

Figure 5 shows that even without attacks, FedRecover does
not fully recover for complex datasets like FEMNIST and
CIFAR10. In recovery from an attack for MNIST (Fashion-
MNIST), FedRecover achieves 91% (72.7%) recovery accu-
racy from a post-attack accuracy of 80% (64%), where the
original training accuracy is 92% (75.2%). For FEMNIST
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Figure 4: Comparative analysis of TrMean AGR with FedSGD and FedAvg under trim attack. TrMean is more susceptible to
poisoning with FedSGD due to slow convergence, which gives adversaries more time for poisoning (threat model in §II-B2)
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Figure 5: Performance of FedRecover on four datasets, both
with and without trim attack in the original training.

Table II: Impact of data-level perturbations on FLDetector.
dataset pertubation FedSGD FedAvg

FPR FNR FPR FNR

MNIST Noisy-features 0 0 0 0
Noisy-label 0 0 0 0

Fashion Noisy-features 0 0 0 0
Noisy-label 0 0 0 0

FEMNIST Noisy-features 0 1 0 1
Noisy-label 0 1 0 1

and CIFAR10, differences between the baseline accuracy and
recovery accuracies are 11% and 19%, respectively, indicating
an incomplete recovery in the attack setting. This performance
variation stems from dataset complexity, with estimation errors
higher for complex tasks such as FEMNIST. The impact of
periodic correction and warmup phase on estimation error and
recovery performance is discussed in §V-C, §V-D, and §V-E.

3) FLDetector’s performance varies with task complexity:
We assess FLDetector’s performance across varying task com-
plexities using MNIST, FashionMNIST, and FEMNIST. To
enhance task complexity, we introduce minor perturbations
in features and labels, as we already know the results of
these datasets in the unperturbed setting [106]. Table II shows
that MNIST and FashionMNIST datasets remain robust, with
FLDetector achieving perfect detection, i.e., zero FNR (False
Negative Rate) and FPR (False Positive Rate). However, for
FEMNIST, FLDetector shows an FPR of 0 and FNR of 1
across all conditions, indicating that it fails to detect any
attacks, classifying all malicious clients as benign and allowing
them to remain in the training process.

Performance variations across datasets stem from task com-
plexity, extensively discussed in §V-A1 and §V-A2. MNIST
and FashionMNIST, less affected by the Stat-Opt attack (Fig-
ure 4), have closely clustered benign updates, making it diffi-
cult for malicious updates to be stealthy. This proximity aids
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Figure 6: Comparison of Sample and Class Distribution in FL
Datasets: Histograms illustrating (a) the number of samples
and (b) the number of classes per client, generated using FCJ
and Dir distributions. From left to right, the non-i.i.d. degree
of generated datasets increases, reflecting the impact of higher
FCJ (or Dir) parameters in generating more (or less) non-
i.i.d. datasets. We note that all FCJ client datasets are almost
the same size, while Dir client datasets are widely varying.
Similarly, with FCJ, all clients have all the classes, while with
Dir, the number of classes varies widely.

FLDetector in distinguishing between malicious and benign
updates. Conversely, FEMNIST, a naturally distributed and
more heterogeneous dataset than MNIST and FashionMNIST
(§V-B1), results in client updates being further apart. This
increased distance enables a malicious update to blend in
seamlessly, evading detection by FLDetector.

B. Homogeneous Data Distribution

In this section, we first show that the Dir (Dirichlet) distri-
bution is more real-world than the FCJ distribution through
statistical analyses and visualization. Subsequently, we show
the effect of these distributions and their varying levels of
heterogeneity on the robustness of TrMean and FedRecover.
The original work on FLDetector [106] already analyzed
different levels of heterogeneity, so we skip this here.

1) Statistical analyses of FCJ and Dir distributions: We
consider a classification task with a total of C classes; we
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(c) Dir distributed client datasets.
Figure 7: T-SNE projections of class frequency vectors of
client datasets generated using FCJ (b) and Dir (c) distribu-
tions. From left to right, non-i.i.d. degree increases.

generate client datasets using Dir and FCJ for 100 clients
with varying degrees of non-i.i.d. We provide analyses for
CIFAR10, but it applies to other datasets. We then plot the
following three statistics of the datasets:
(Stat-1): We plot the number of samples per user, which is
motivated by the visualizations of real-world FL datasets in
Leaf (Figure 14). Figure 6a shows the results for three degrees
of non-i.i.d. For Dir we use α ∈ {0.1, 0.3, 0.5} and for FCJ we
use bias b ∈ {0.9, 0.5, 0.1}. We note that Dir produces client
datasets with heterogeneous sizes; the histograms are similar
to real-world datasets in the Leaf repository (Figure 14).
However, FCJ makes client datasets with almost equal size;
note that the FCJ histograms are always concentrated around
500 (the total number of samples in the CIFAR10 dataset /
total number of clients).
(Stat-2): In Figure 6b, we show the number of classes each
client has when we use Dir or FCJ. We observe that for FCJ,
all clients have all the classes except when the bias is 0.9. In
the real-world datasets, all clients generally do not have all the
classes [59]. Similar to these real-world datasets, the clients
have a widely varying number of classes in Dir distribution.
(Stat-3): For each client, we compute a C-dimensional vector
where the ith dimension represents the number of samples
from class i; here, we use CIFAR10 with 100 clients; hence
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Figure 8: The effect of varying heterogeneity levels for FCJ
and Dir distributions on the FashionMNIST dataset.

we get 100 10-dimensional vectors. Then, we plotted T-SNE
projections of these 100 vectors; we plotted them for both Dir
and FCJ distributed client datasets. Figures 7b and 7c show
the projections for Dir and FCJ, respectively. For reference,
we also show in Figure 7a how the T-SNE projections look
like for (1) 100 clients with perfectly i.i.d. datasets and (2) the
real-world FEMNIST dataset.

For FCJ distribution, we note that, for bias values greater
than 0.2 (Figure 7b center and right), the client datasets form
local clusters, i.e., within these clusters, the clients have highly
i.i.d. datasets. This is expected because FCJ forms C groups of
clients where ith group gets the bias fraction of data from ith

class and bias/(C−1) fraction of data from other classes. This
data is then randomly assigned to clients within the ith group,
which makes these clients’ datasets i.i.d. On the other hand,
globally, these clusters form potentially non-i.i.d. structures.
However, for a bias of 0.1, we observe almost i.i.d. datasets
as expected; Figure 7a-left shows a perfectly i.i.d. dataset.
To summarize, although both are globally non-i.i.d., we have
shown that the FCJ distribution is locally-i.i.d., while Dir is
locally non-i.i.d.. Next, we study their impact.

2) TrMean is more robust with lower heterogeneity: We
demonstrate the impact of FCJ and Dir on TrMean’s robustness
for FashionMNIST1 in Figure 8a. In the no-attack setting,
FCJ (DIR) shows little difference, with accuracy going from
89% (88%) at 0.1 (0.5) bias to 84% (86%) at 0.9 (0.1)
bias. However, the distinction emerges in the attack setting
where FCJ is more robust. For the Stat-Opt attack, FCJ (DIR)
accuracy decreases from 84% (80%) at 0.1 (0.5) bias to 75%
(59%) at 0.9 (0.1) bias. A similar trend is observed for the
Dyn-Opt attack. The performance change is rooted in the
nature of the distributions (§V-B1). FCJ is locally i.i.d. but
globally non-i.i.d., while Dir is non-i.i.d. both locally and
globally. Due to Dir’s greater heterogeneity, benign updates
are more dispersed, making it easier for a malicious update
to hide. Consequently, TrMean struggles to detect malicious
updates, leading to lower global model performance.

3) FedRecover performs better under lower heterogeneity:
We show the impact of FCJ and Dir distributions on Fe-
dRecover for the FashionMNIST dataset in Figure 8b. We
observe that the performance of FedRecover lowers when we

1We observe similar trends for other datasets, but for brevity, we only
include FashionMNIST here.
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increase the level of heterogeneity and that FCJ performs
slightly better than Dir. Specifically, the difference between
no-attack accuracies for FCJ at bias 0.3 and 0.7 is 7% and
12.6%, respectively, whereas, for Dir, that difference is slightly
higher; 8.2% and 13.3% corresponding to non-i.i.d. parameters
of 0.7 and 0.3 respectively2.

The reason for FedRecover’s performance reduction un-
der high heterogeneity is that a higher heterogeneity means
that client updates are far apart and drift away from the
global model. Since the update estimation in FedRecover uses
knowledge of the current and past global models, the HVP
calculation step (§C) incurs significant estimation errors if
the local model drifts away from the global model.

C. Slow-converging Algorithms

Here, we will study the impact of the choice of the two
widely used FL algorithms, FedSGD and FedAvg, on the ro-
bustness of TrMean and FedRecover. We combine our analysis
of algorithms with the choice of attacks for FLDetector in
§V-E2; therefore, we do not discuss it in this section.

1) Fast algorithms make TrMean more robust: In Figure 4,
we show the accuracy of FedSGD and FedAvg with TrMean in
benign and Stat-Opt attack scenarios. For FedSGD, we align
our implementation with recent defenses [18], [28]. In contrast,
FedAvg is optimized for greater accuracy with only 5% to 20%
of FedSGD’s communication (the number of rounds).

Under both benign and adversarial conditions, FedAvg
greatly surpasses FedSGD in performance, convergence, and
communication for all datasets, as shown in Figure 4. We can
conclude here that in adversarial situations, FedAvg proves
more resilient to untargeted poisoning due to its rapid con-
vergence, giving adversaries minimal time for poisoning.

2) Fast algorithms lower estimation errors in FedRecover:
We examine FedRecover’s performance under different algo-
rithms, FedSGD and FedAvg. The original study [18] ap-
plies the Stat-Opt attack to MNIST with FedSGD over 2000
rounds, reducing accuracy from 96% to 81%. By employing
FedAvg with carefully chosen hyperparameters (Appendix D),
as shown in Figure 4a, we achieve 98% accuracy in 50
rounds, with the Stat-Opt attack lowering it to only 96%.
This allows for perfect recovery, as depicted in Figure 10b,
where both MNIST and FashionMNIST (no-attack accuracy:
87%) show perfect recovery under the fast-converging Fe-
dAvg. This perfect recovery holds even with variations in the
periodic correction periodicity Tc. FedRecover excels in this
scenario because FedAvg’s rapid convergence (§II-A) provides
a high starting accuracy during FedRecover’s warmup phase.
Throughout periodic correction and abnormality fixing phases,
client updates computed over multiple local epochs (in con-
trast to FedSGD’s single local epoch) lead to lower estimation
errors, ensuring perfect recovery.

2For FCJ, a higher value of the i.i.d. parameter means higher heterogeneity,
but it is the opposite case for Dir.
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Figure 9: Stackoverflow in practical settings.

D. Limited FL Settings

To show the effect of scale on FL defenses, we first assess
the impact of a scale-constrained threat model on TrMean. We
then show why FedRecover and FLDetector are incompatible
with cross-device settings and discuss the practicality of stor-
age, computation, and communication for FedRecover (or, any
mechanism requiring stored historical information).

1) Mean AGR is robust on a large scale: In this section,
we showcase the robustness of the mean AGR, typically not
robust in cross-silo settings [103], within a large-scale, cross-
device environment. Given the growing popularity of language
models [90], [15], although underrepresented in our defense
survey (Figure 3a), we leverage the StackOverflow [7] dataset
for large-scale evaluation (setup details in Appendix A). The
no-attack baselines in Figure 9a are obtained following the
settings in [78]. We can see that with the standard amount
of 20% malicious clients, the Stat-Opt attack significantly
impacts StackOverflow in cross-device.

The StackOverflow FL setting has about 300,000 clients
and 20% amounts to 60,000 malicious clients. Accessing
and modifying such a vast number of devices is considered
impractical, factoring in operational and financial costs [83].
Figure 9b shows a decline in attack performance as the
percentage of malicious clients decreases. Notably, with less
than 5% malicious clients, the Mean AGR remains unaf-
fected by the Stat-Opt attack. It is important to highlight the
difference between our findings and [83] where the attack
impact with Mean AGR is > 0% even for 0.01% of malicious
clients for FEMNIST, CIFAR10, and Purchase, while in our
Stack Overflow case, the attack impact is 0% for < 2%
malicious clients. With our results, we strongly emphasize
using datasets especially designed for FL and evaluating
defenses under constraints imposed by scaling up the system
in addition to small-scale experimentation. We do not dismiss
the significance of small-scale experiments. Cross-silo FL is
indeed widely used. Instead, we emphasize the critical need
for evaluating FL defenses within scaled-up settings.

2) Resource overheads for FedRecover: Here, we first
explain the reasons behind our conviction that FedRecover
and FLDetector are incompatible in the cross-device setting.
Consequently, we do not evaluate these two defenses under the
cross-device setting. Nevertheless, in this section, we comment
on some of the practical aspects of FedRecover, such as
computation, communication, and storage costs, to assess the
feasibility of scaling up such systems.
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Figure 10: Communication-accuracy tradeoff for FedRecover.
Despite the presence of four lines, their overlap is discernible
as we can achieve baseline accuracy with exact updates.

Compatibility of Fedrecover and FLDetector with the
cross-device FL: FedRecover’s reliance on historical infor-
mation from clients’ past updates is hindered in cross-device,
where clients participate in a few rounds, limiting available
historical updates. Similarly, FLDetector faces challenges in
the cross-device setting due to a lack of consistent historical
information. Therefore, we find FedRecover and FLDetector
incompatible with the cross-device setting.

Communication-accuracy tradeoff for FedRecover: In Fig-
ure 10a, we show the tradeoff between the recovery accuracy
and communication of FedRecover. The recovery accuracy
increases as it relies more on exact updates (locally computed
updates instead of estimated ones) from the clients, where
the minimum number of exact updates is Tw + Ttotal−Tw−Tf

Tc

+ Tf . Interestingly, using the same amount of exact updates
(effectively the same amount of communication as the server
would communicate with clients for the same number of
rounds) gives us more accuracy by training from scratch,
i.e., not using FedRecover but restarting training with benign
clients only. For instance, with only 20% exact updates and
Tw = 20, FedRecover achieves ≈ 76% accuracy while training
from scratch with an equivalent 40 rounds achieves ≈ 80%.

In Figure 10b, we can see that with a small percentage
of exact updates, FedRecover completely recovers for simpler
datasets like MNIST and FashionMNIST with FedAvg and is
unaffected by the variation in periodicity Tc. With the same
amount of exact updates, we can achieve the same results
without FedRecover as well. This is because a fast algorithm
gives less time for the adversary to attack and a higher starting
point for FedRecover to recover, leading to lower estimation
errors (§V-C2).

Based on these observations, we conclude that with fast
converging algorithms and proper settings, we might not need
to use FedRecover, especially when it comes with an additional
computational and storage cost. In our experiments, for the
slow baseline that uses FedSGD over 1000 epochs for MNIST,
we require ≈ 200GB of storage for saving the client model
updates every round. By extension, this applies to any defense
that requires knowledge of past updates. This cost would
significantly increase with the number of clients and by using
larger models for more complex tasks.
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Figure 11: Performance of FedRecover, represented by the
difference between no-attack and post-recovery accuracies,
under non-zero FPRs and FNRs caused by adaptive attacks.

E. Naive Attacks

This component is critical in our research, given the preva-
lence of simple attacks highlighted in §IV. We demonstrate
TrMean’s vulnerability to powerful model poisoning attacks
such as Stat-Opt and Dyn-Opt. We also test our adaptive attack
on FLDetector, revealing high rates of imperfect client detec-
tion and showcasing its impact on FedRecover, which relies
on FLDetector to identify malicious clients before recovery.

1) Choice of attacks greatly impact TrMean’s performance:
We conduct Stat-Opt [28] and Dyn-Opt [84] attacks on Fash-
ionMNIST, varying the heterogeneity for both FCJ and Dir
distributions. The results are depicted in Figure 8a. Generally,
Dyn-Opt is stronger than Stat-Opt, particularly noticeable at
higher heterogeneity levels. For instance, at Dir bias level 0.1,
the accuracy drops to 51% for Dyn-Opt compared to 59% for
Stat-Opt. Dyn-Opt’s strength lies in finding optimal pertur-
bations tailored for the dataset at every FL round, making it
more potent compared to the static nature of perturbation in
Stat-Opt, as discussed in §II-B1.

2) Overcoming FLDetector with our adaptive attack: We
introduce a novel attack to assess FLDetector’s resilience
against adaptive attacks. Malicious clients craft updates using
our attack and evade detection by FLDetector, resulting in
non-zero FNRs and FPRs.

Our attack adds a carefully crafted perturbation vector to
client model updates, so they are close enough to the estimated
model updates, thereby bypassing FLDetector’s detection. We
defer the attack formulation steps to Appendix B due to space
constraints. Following those steps, an adversary is able to craft
a malicious update using Equations 2, 3, and 4. The impact of
our adaptive attack on the performance of FLDetector is shown
in Table III and across all cases (different combinations of
dataset, FL algorithm, and percentage of compromised clients),
except one, we find that the FNR is non-zero, which means that
malicious clients have not been detected, and they continue to
be part of the training process. Since the attack is designed to
craft malicious updates that are statistically close to the benign
ones, it leads to a non-zero FPR as well, which means that
many benign clients are falsely detected as malicious and are
removed from the training process. Since we achieve a 0 FPR
and a 1 FNR for FEMNIST, this means that the attack never
gets detected, no benign or malicious client is removed, and
all malicious clients seem benign to FLDetector on the server.
We discuss the impact of non-zero FNR and FPR on further
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Table III: Impact of our adaptive attack on FLDetector. Here
%m represents the percentage of malicious clients.

%
m Baseline MNIST Fashion CIFAR10 FEMNIST

FPR FNR FPR FNR FPR FNR FPR FNR

5 FedSGD 0.4 1 0.52 0.4 0.21 0 0 1
FedAvg 0.02 1 0 1 0.13 1 0 1

10 FedSGD 0.39 1 0.56 0.6 0.37 0 0 1
FedAvg 0.02 1 0.02 1 0.23 0.67 0 1

15 FedSGD 0.48 0.8 0.54 0.3 0.35 0.35 0 1
FedAvg 0.02 1 0.05 1 0.18 0.67 0 1

20 FedSGD 0.45 1 0.62 0.3 0.35 0.33 0 1
FedAvg 0.01 1 0.06 1 0.17 0.67 0 1

training and recovery in §V-E3.
3) Imperfect detection leads to lower recovery perfor-

mance: Our adaptive attack results in imperfect client de-
tection (§V-E2), allowing escaped clients into the recovery
process. The escaped clients are denoted by the FNR, while
benign clients, incorrectly classified as malicious and subse-
quently removed from training, are represented by the FPR.

Figure 11 shows that non-zero FNRs and FPRs challenge
FedRecover’s ability to reach the no-attack accuracy of 82%.
For instance, at FNR = FPR = 0.3 for Tw = 10, the
recovery accuracy is only 67%. This is because malicious
updates in the recovery process cause higher estimation errors
and deviate the recovery model from the benign one. A
marginal improvement is observed with more warmup rounds,
achieving a post-recovery accuracy of 70% for Tw = 20, as
increased warmup rounds provide a higher starting point for
the model, resulting in lower overall estimation errors.
F. Unfair Metrics

A key feature of FL is heterogeneity (§V-B1), which makes
testing and reporting individual client’s performance essential.
Unfortunately, almost all of the surveyed works only report
the global model accuracy (§IV). To show that this is unfair,
we show how personalized performance differs from that of
the global model using TrMean and FedRecover under benign
and adversarial settings.

1) Different clients have different levels of robustness under
TrMean: We train on FEMNIST for 200 rounds, achieving
a global model accuracy of 82%. Figure 12a displays the
accuracy trends, where global w/o attack represents the global
model accuracy, and per-client w/o attack shows individual
client test accuracies. Per-client w/o attack clusters around
the global accuracy, indicating the model learns from the
combined data. Due to heterogeneity, we see a lot of variation
in the performance of individual clients. In the attack scenario
(global w/ attack at 66% and per-client w/ attack), a similar
trend persists, but most clients now fall below the global attack
accuracy. Based on our observations due to heterogeneity
across clients, we strongly advocate using per-client metrics
in future evaluations.

2) FedRecover’s performance greatly varies on a per-client
basis: Similar to the personalized evaluations for TrMean
in §V-F1, we apply personalized evaluations to FedRecover
for the FEMNIST dataset. After performing FedRecover on
the global model with 66% accuracy (§V-F1), we achieve
a post-recovery accuracy of 74% (post-recovery in Fig-
ure 12b). This is illustrated on a per-client basis with the lines
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Figure 12: Personalized evaluations, i.e., per-client accuracy
for FEMNIST with TrMean and FedRecover. Note that the
accuracy does not increase monotonically with the client
number, rather we plot it in an ascending order here since
order does not matter when we want to show variation in per-
client accuracy.
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Figure 13: Overall, per-class, and mean per-class accuracies
for imbalanced CIFAR10 before and after Stat-Opt attack.
Class 0 has the most samples.

fnr0.1fpr0.1, fnr0.3fpr0.3, fnr0.5fpr0.5 in Figure 12b.
The post-recovery accuracies for various FNRs and FPRs indi-
cate that most client models fall below the global post-recovery
accuracy. At an FNR and FPR of 0.5, all clients lie below
both the post-recovery accuracy and the post-attack accuracy,
signifying a failure in achieving recovery. This aligns with
our findings in §V-E3 that the presence of malicious clients
during recovery leads to higher estimation errors, as mirrored
in our per-client evaluations. This consistency underscores the
necessity for personalized evaluations, particularly in non-
i.i.d. datasets.

3) Impact of class-imbalance on per-class accuracies:
We examine the impact of class imbalance in CIFAR10 on
the performance of TrMean under the no-attack and Stat-Opt
attack scenarios. Following the setup in Appendix D3, we are
able to achieve an overall accuracy of 70.82% without attack
and 42.66% with attack using balanced CIFAR10. We define
the overall accuracy as the total number of correct samples
out of the total number of samples in the test dataset and
the mean per-class accuracy as the mean of all the per-class
accuracies in the test dataset. Next, we create an imbalance
in the CIFAR10 dataset by removing 90% of the samples
of all classes except class zero. This produces 5000 samples
of class zero and 500 samples each for other classes in the
training set. Figure 13 shows that in the imbalanced setting,
the overall accuracy in no-attack is 68%, which is close to its
balanced accuracy of 70.82%. However, this accuracy is biased
towards class 0, which has the highest per-class accuracy of
86.2%(75.8% in the balanced scenario) since it has ten times
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more samples than the rest. The mean per-class accuracy is
52% as it ignores the class imbalance. This indicates that
the mean per-class accuracy is a better metric than overall
accuracy in this case, as it shows that the model loses utility
with reduced samples.

The imbalanced Stat-Opt scenario yields an overall accu-
racy of 48%, surpassing the balanced counterpart at 42.66%.
Figure 13 shows that the overall accuracy is significantly
influenced by class 0, dropping from 86.2% to 64.3% under
attack, compared to a drop from 75.8% to 17.3% in the
balanced scenario. The mean per-class accuracy for the im-
balanced attack is 27%. This highlights that dominant classes
are less affected by attacks, influencing the overall accuracy
to reflect their performance. While overall accuracy is crucial,
we stress the importance of reporting per-class and mean per-
class accuracies, especially in real-world datasets with class
imbalances, as neglecting this aspect can lead to misjudgments
about a system’s robustness.

VI. RELATED WORK

Previous systemizations: In prior research, various tax-
onomies in adversarial ML have been developed, extending
beyond FL [32], [40], [10], [13], [38], [80] and their main
focus is on the attacks. [80] presents a taxonomy specifically
for FL defenses, categorizing them based on their occurrence
at the client, server, or communication channel. Our contribu-
tion extends beyond this by providing a more comprehensive
and multidimensional systemization of the existing defenses in
the literature. Additionally, we leverage our systemization to
identify representative defenses for in-depth pitfall analyses.

Shejwalkar et al. [83] have performed the systemization of
FL attacks, highlighting misconceptions about the robustness
of FL systems that may arise from overlooking practical
considerations about the threat model in deployment scenarios.
Their conclusion emphasizes the high robustness of FL with
simple and cost-effective defenses in practical threat mod-
els. Our work complements this perspective by focusing on
defenses. We systematically categorize and re-evaluate repre-
sentative defenses, uncovering common pitfalls, and providing
actionable recommendations to address each.
Pitfalls and guidelines: Arp et al. [6] have extensively studied
the pitfalls associated with ML in computer security, identi-
fying and providing recommendations for several challenges
in this domain. It is crucial to emphasize the distinctions
between our work and theirs. While we may identify similar
pitfalls, such as Inappropriate Baseline (§V-C), Inappropri-
ate Performance Measures (§V-F), and Lab-only Evaluation
(§V-D), the underlying reasons for these pitfalls and their
impact are specific to FL. For example, a pitfall, “inappropriate
performance measures,” addresses inappropriate performance
measures like overall accuracy due to its limited capture
of information about false positives and false negatives. In
our context (§V-F), we discuss inappropriate performance
measures, particularly in relation to fairness, and advocate for
the use of personalized metrics, especially when dealing with
non-i.i.d. data.

In the space of adversarial ML, Carlini et al. [22] identified
numerous pitfalls associated with evaluating defenses against
adversarial learning. While there are some commonalities
with our work, such as considerations regarding the choice
of attacks and testing against adaptive attacks, the primary
distinction lies in the fact that our evaluation is specifically
conducted in FL. Certain evaluation components are exclusive
to FL, such as dealing with client heterogeneity and person-
alized evaluations.
Improvements over [43]: We take inspiration from [43],
which initiated the identification of FL pitfalls and used
FedRecover as a case study to showcase the impact of some
of these pitfalls. Before building upon their work, we set
out to perform a systemization of FL defenses to understand
the FL defenses space. This helps us to select representative
defenses for pitfall analysis. We have expanded [43]’s analysis
by exploring additional pitfalls and studying their impact.
Additionally, we broadened the evaluation spectrum by in-
corporating additional representative defenses like FLDetector
and TrMean. Our study extends to a large-scale evaluation of
FL with the language modality using StackOverflow [7].

VII. LIMITATIONS AND FUTURE WORK

Performing a thorough exploration and evaluation of all the
defenses in Table IV, along with additional ones, goes beyond
the scope of a single paper. The defenses chosen for evaluation
serve as representatives of the broader defense literature;
however, it’s acknowledged that alternative evaluations may
differ based on different sets of defenses. Also, a newly
designed defense based on a novel technique might not fit
exactly along the attributes in our systemization. Therefore,
our systemization remains adaptable (as detailed in §I), al-
lowing for the incorporation of additional attributes in the
future. As highlighted in §I, our aim is to expand the scope of
our evaluation across diverse dimensions, encompassing data
distributions, data modalities, and the nature of the ML task.
While we have addressed image classification and NLP, other
modalities, such as multimodal time-series tasks [107], and the
emerging paradigm of vision-language models [76], remain
unexplored. The evaluation of these modalities, along with
more complex vision-language models, under traditional threat
models could prove intriguing. Such exploration might lead
to the development of new attacks and defenses, potentially
uncovering novel pitfalls in the process.

VIII. CONCLUSION

Our study contributes a crucial systemization of FL de-
fenses, offering valuable insights for researchers and practi-
tioners in the selection, combination, and design of defenses.
Additionally, we address an often-overlooked aspect in the
FL poisoning defense literature— the experimental setups em-
ployed to assess defense efficacy. After reviewing a variety of
defense works, we identify prevalent questionable experimen-
tal trends. Through case studies featuring well-known defenses
such as TrMean, FLDetector, and FedRecover, we illustrate
how the choice of experimental setups can significantly impact
robustness claims.
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and optimal algorithms for personalized federated learning,” Advances
in Neural Information Processing Systems, vol. 33, pp. 2304–2315,
2020.
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APPENDIX

A. Our methodology to classify 50 defenses

Table IV shows our survey of the 50 defense works and our
classification methodology along the six dimensions: Datasets,
Attacks, Data Distribution, FL-Algorithm, FL Type, and Eval-
uation Type.

B. Our adaptive attack

FLDetector computes the estimated update (§C) for client
k as:

∇̂k
t = ∇k

t−1 + Ĥt · (θt − θt−1) (1)

In this attack, we introduce a perturbation vector, P , that
modifies the updates sent from malicious clients. A ma-
licious client computes its update so that its final update
is computed as the sum of its previous update, the HV P
or Hessian V ector Product (Ĥt · (θt − θt−1)), and the
perturbation vector. This can be written as:

∇̂k
t = ∇k

t−1 + Ĥt · (θt − θt−1) + P (2)

The server estimates an update by adding the HV P to
the last round’s exact update and compares it with the actual
update in that round (§C). The malicious update, therefore,

deviates from the estimated update by P . We proceed to detail
the calculation of this perturbation vector P . To calculate P ,
we first calculate a good distance range, R, that is a safe
perturbation distance for the perturbation vector by taking
the norm between the old and new client updates. The good
distance range, Rk

t , for client k, at round t is given by:

Rk
t = ||∇̂k

t −∇k
t || (3)

Here, ∇̂k
t is the estimated update for client k at round t,

and ∇k
t is the actual update for client k at round t. The

deviation, D, for the perturbation vector is calculated by
following deviation strategies in [84]. It can either be unit
vector, sign, or std. Finally, P is computed by taking the
average of all the good distance ranges, R, and directing it in
the direction of the deviation, D:

P =
D
||D||

· 1
N

N∑
k=1

Rk
t (4)

C. Descriptions of our chosen defenses

Trimmed Mean (TrMean) [103] is a foundational defense
used in advanced defenses [18], [106], [84]. It sorts each input
dimension j of the client updates, discards the m largest and
smallest values (where m indicates compromised clients), and
averages the rest.
FLDetector [106] is designed to detect and eliminate mali-
cious clients, ensuring a byzantine-robust FL system obtains a
precise global model. FLDetector operates on the principle that
malicious updates, tainted by adversaries, differ statistically
from benign ones.

For discerning these updates, the server estimates a global
model update for client k at round t using the L-BFGS
algorithm: (∇̂k

t = ∇k
t−1 + Ĥt · (θt − θt−1)). Here, ∇k

t−1.
The server retains past N global model differences (∆θt) and
updates differences (∆∇t−1) to compute the HVP (Hessian
Vector Product) with L-BFGS. It then gauges a client’s suspi-
cious score by comparing actual and predicted updates through
their Euclidean distance. With scores from the last N rounds,
clients are clustered via Gap statistics [89] and K-means. The
group with higher average scores is deemed malicious. Upon
detecting a rogue client, the server ceases training, removes the
offender, and restarts training to achieve enhanced accuracy.
FedRecover [18] aims to recover an FL global model compro-
mised by a poisoning attack. In the original training phase,
for each round t, FedRecover saves ∇k

t from client k and
global models θtg . This data is used as historical information
in the recovery phase, which consists of the following stages.
In the warmup phase, the server requests clients’ exact updates
for the initial Tw rounds. In the estimation phase, the server
estimates client updates each round, with ∇̂t

k representing
client k’s estimated update at round t. This estimate is derived
using the L-BFGS algorithm [67] based on the original global
model, client update, and recovered global model. The model’s
estimated update is defined as ∇̂k

t = ∇t

k+H̃t
k(θ̂

t
g−θ

t

g), where
the latter term is the HVP(Hessian Vector Product). Every
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Table IV: Classification of 50 defense works across 6 dimensions of evaluation setup.

Work Datasets Attacks Data Distribution FL Algorithm FL
Type

Evaluation

FLDetector [106] FA,FE,C10 Stat-Opt Fang, Natural FedSGD CS Global
FedRecover [18] M,FA,P,H Stat-Opt Fang FedSGD CS Global
Machine Learning with Adversaries [14] M, spambase RGA IID FedSGD CS Global
FLTrust [19] M,CHM,C10,H Krum, Stat-Opt, LF Fang FedAvg CS Global
Byzantine-Robust Distributed Learning [103] M RGA IID FedSGD CS Global
Provably Secure Federated Learning against [20] M Not applicable Fang FedAvg Global
Learning to Detect Malicious Clients for [51] M, FE, S140 SF, AN, BD Natural, McMahan FedAvg CD Global
Robust Federated Learning [100] M,FE,C10/100,N20 LF, LIE, Fang Dirichlet, Natural FedAvg CD Global
The Hidden Vulnerability of Distributed [60] M, C10 Specific attack IID FedSGD CS/CD Global
Sageflow [71] M, FA, C10 SF, LF McMahan FedAvg CS Global
Mitigating Irrelevant Clients in FL [64] M LF McMahan FedAvg CS Global
Cronus [23] M, C10, P, Svhn {LF, LIE} IID FedAvg CS Global
Can You Really Backdoor Federated Learning? [88] FE BD Natural FedAvg CS/CD Global
Generalized Byzantine-tolerant SGD [98] M, C10 BF, LF, LIE IID FedSGD CS Global
The Limitations of Federated Learning [31] M, VGG, KDD, A LF, BD Each class to a client Both CS Global
Auror [85] M Targeted-LF IID FedSGD CS Global
Robust Aggregation for Federated Learning [73] FE,S140,S Specific attacks, RGA Natural FedAvg CS/CD Global
CRFL [97] M, FE BD IID FedAvg CS Global
FLIP [105] M, FA, C10 BD Dirichlet FedAvg CS Global
RoFL [16] FE, C10 BD Natural, Dirichlet FedAvg CD Global
Securing FL against Overwhelming [77] M, FA LF, BD Dirichlet FedAvg CS Global
Defending against the Label-flipping Attack [39] M, C10 LF, IID, Dirichlet FedAvg CS Global
FRL [62] M, FE, C10 Fang, Dyn-Opt Dirichlet, Natural FedAvg CD Global
CONTRA [8] M, C10, Loan LF, BD Dirichlet FedAvg CS Global
EIFFeL [81] M, FA, FE,C10 LIE, RGA, SF, Dyn-Opt IID, Natural FedAvg CS/CD Global
Local and central DP for robustness [65] E, C10, s140, Red-

dit
BD McMahan FedAvg CS/CD Global

Signguard [102] M, FA, C10, AG-
news

LIE, RGA, SF, Dyn-Opt IID FedSGD CS Global

DisBezant [56] {M, FA, C10} RGA {Fang} FedAvg Global
Learning from History for Byzantine [74] M, C10 BF, LF, LIE Exponential FedSGD CS Global
Byzantine-robust learning on heterogeneous [42] M BF, LF, LIE, IPM, Mimic {McMahan} FedSGD CS Global
Byzantine-Resilient Non-Convex Stochastic [4] C10, C100 SF, LF, LIE, Delayed-grad IID FedSGD CS Global
Byzantine-robust Federated Learning [53] M, FA,

C10,Spambase
LF, IPM, LIE, Uniform, ar-
bitrary

McMahan FedAvg CS/CD Global

Stochastic alternating direction method of [54] M, Covertype RGA, SF, LF IID FedSGD CS Global
Variance reduction is an antidote to byzantines [33] LIBSVM LF, BF, LIE, IPM {IID} FedSGD CS Global
On the byzantine robustness of clustered FL [82] M, FA, C10 RGA, LF, Uniform noise IID FedSGD CS Global
RSA [48] M SF IID FedSGD CS Global
Federated variance-reduced [95] ijcnn1, covtype RGA, SF, Zero-grad IID FedSGD CS Global
Abnormal client behavior detection in [50] FE SF, RGA, Grad ascent Natural FedAvg CD Global
Distributed Momentum for Byzantine [27] M, FA, C10/100 LIE, IPM IID FedSGD CS Global
Attack-resistant FL with residual-based [30] M, C10, Amazon,

Loan
LF, BD Dirichlet, Natural FedAvg CS Global

Towards communication-efficient [55] M LF IID FedSGD CS Global
Justinian’s GAAvernor [70] M, C10, Yelp,

Health
RGA IID FedSGD CS Global

Untargeted poisoning attack detection [58] M, C10, MTL Tra-
jet

BD IID FedSGD Global

TDFL [101] M, FA, C10 LF, RGA, Krum, Stat-Opt,
BD

McMahan FedAvg CD Global

Siren [34] FA, C10 SF, LF, bhagoji Fang FedAvg CS Global
FLARE [92] FA, C10, Kather Krum, Stat-Opt IID FedAvg CS Global
Analyzing Federated Learning Through [12] FA, UCI Census Specific attack IID FedAvg Global
BaFFLe [5] C10, FE BD Dirichlet FedAvg Global
Defending against backdoors in FL [69] FA, FE BD Both FedAvg Global
Ditto [52] FA, FE, CelebA LF, RGA, BD Natural, McMahan FedAvg CS Personalized

Tc rounds, to ensure the estimated global model θ̂tg aligns
closely with the accurate model, the server initiates a periodic
correction by requesting exact updates. If any component of a
client’s estimated update surpasses the abnormality threshold
τ , that client is prompted for an exact update. In the final
fine-tuning phase, spanning Tf rounds, clients are asked to
provide their exact updates,∇t

k, to refine the global model by
eliminating potential estimation errors.

D. Experimental setup

Due to space constraints, we provide a detailed experimental
setup here.

1) FEMNIST [17], [24]: FEMNIST is a character recog-
nition classification task with 3,400 clients, 62 classes (52
for upper and lower case letters and 10 for digits), and
671,585 grayscale images. Each client has data of their own
handwritten digits or letters. We use 300 randomly selected
clients with their original data in a cross-silo fashion, as
FedRecover uses the cross-silo setting in its implementation.
We use the CNN used by [18] and use the Xavier weight
initialization.

Hyperparameters for re-eval: For FEMNIST, we run over
200 epochs with 300 clients. In the attack setting, 60 clients

17



Figure 14: FEMNIST histogram from leaf.cmu.edu
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Figure 15: Overall and per-class accuracies for CIFAR10
before and after Stat-Opt attack.

are malicious. The results in Figure 5 use Tw = 10, and
Tc = 10. The FL algorithm used here is FedAVG with a
local learning rate of 0.05 and a global learning rate of 1. We
keep the batch size to 32. The number of local epochs is kept
at 1. For Figure 11a, we consider the possibility of benign
clients being misclassified as malicious or malicious clients
being misclassified as benign, so we vary the false negative
and false positive rates between 0.1 and 0.5.

2) CIFAR10 [45]: CIFAR10 is a 10-class classification task
with 60,000 total RGB images, each of size 32 × 32. We
divide all the data among 100 clients using either Dirichlet [78]
or FCJ [28] distributions, which are the two most popular
synthetic strategies to generate the FL dataset. We use a
Resnet20 model with the CIFAR dataset.

Hyperparameters for re-eval: We run over 100 epochs
with 100 clients. In the attack setting, 20 clients are malicious.
The FL algorithm used here is FedAVG, with a local learning
rate of 0.01 and a global learning rate of 1. We keep the
batch size to 16. The number of local epochs is kept at 2.
The results in Figure 5 use Tw = 10, and Tc = 5 and the
fang distribution. Contrary to the rest of the datasets used, we
use Tc = 5 because CIFAR10 was a much more challenging
learning task.

3) Imbalanced CIFAR10: To set up our baseline, we train
an Alexnet model with 100 clients over 100 epochs. We use the
standard CIFAR10 dataset that has 50000 training samples and
10000 test samples. Figure 15 shows that we achieve an overall
accuracy of 70.82% without attack and 42.66% with attack. It

also shows the respective per-class accuracies. We define the
mean accuracy as the mean of all the per-class accuracies.
In this case, since the test dataset is perfectly balanced, i.e.,
each class has the same number of test samples, the overall
accuracy and the mean accuracy are the same.

4) MNIST [47]: MNIST is a 10-class digit image classifi-
cation dataset, which contains 70,000 grayscale images of size
28 × 28. We consider 100 FL clients and divide all data using
Dirichlet or FCJ distributions. We use the same CNN as the
FEMNIST dataset.

Hyperparameters for re-eval: For MNIST, we run over
2000 epochs with 100 clients, a learning rate of 0.03, and a
batch size of 32. In the attack setting, 20 clients are malicious.
We set Tw = 20, and Tc = 10. The FL algorithm used here
is FedSGD. The results reported in Figure 5 use the FCJ
distribution.

5) Fashion-MNIST [96]: Fashion-MNIST is a 10-class
image classification dataset with grayscale images of clothing
of size 28 × 28. It contains 70,000 total images. We consider
100 FL clients and divide all 70,000 images using Dirichlet or
FCJ distributions. For CIFAR10, MNIST, and FashionMNIST,
we divide each client’s data in train/test/validation splits in the
ratio of 10 : 1 : 1. We combine clients’ validation data and use
it for validation and hyperparameter tuning and report accuracy
on test data. We use the same CNN as the FEMNIST dataset.

Hyperparameters for re-eval: We run over 2000 epochs
with 100 clients, a learning rate of 3 × 10−3 3, and a batch
size of 32. In the attack setting, 20 clients are malicious. We
set Tw = 20, and Tc = 10. The FL algorithm used here
is FedSGD. The results reported in Figure 5 use the FCJ
distribution.

6) StackOverflow [7]: StackOverflow is a language-
modeling dataset that is used for tag prediction and next-word
prediction. It consists of 342,477 users who are used as clients,
and the training data consists of 135,818,730 examples. We
use an RNN with a 96-dimensional embedding and a 10000-
word vocabulary. The complete network consists of an input
layer followed by an embedding layer, an LSTM layer, and
two dense layers. We use the cross-device setting to obtain
the baseline in [78] by using the fedjax [79] framework. The
FL algorithm is FedAdam, and the training consists of 1500
rounds with 50 clients chosen every round with one local
epoch. We keep the batch size to 16, the client optimizer as
SGD with a learning rate of 10−3, and Adam as the server
optimizer with a learning rate of 10−2.
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Table V: Abbreviations and full-forms of datasets in Table IV.

M MNIST
FA FashionMNIST
FE FEMNIST
C10 CIFAR10
C100 CIFAR100
P Purchase
H HAR
S140 Sentiment140
SVHN Street-view House Numbers
VGG VGGFace
KDD KDDCup
N20 News 20
A Amazon
S Shakespeare

E. Full names for datasets and attacks

Table VI: Abbreviations and full-forms of attacks in Table IV.

LF Label Flip
IPM Inner Product Manipulation
SF Sign Flip
BF Bit Flip
LIE Little is Enough
AN Additive Noise
BD Backdoor [9]
RGA Random Gaussian Attack

3We could not achieve the same accuracy reported in [18] using their
reported 3× 10−4 learning rate, hence we use 3× 10−3.
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